Growth and targeting of subplate axons and establishment of major cortical pathways.
نویسندگان
چکیده
In the developing mammalian neocortex, the first postmitotic neurons form the "preplate" superficial to the neuroepithelium. The preplate is later split into a marginal zone (layer 1) and subplate by cortical plate neurons that form layers 2-6. Cortical efferent axons from layers 5 and 6 and cortical afferent axons from thalamus pass between cortex and subcortical structures through the internal capsule. Here, we identify in rats the axonal populations that establish the internal capsule, and characterize the potential role of subplate axons in the development of cortical efferent and afferent projections. The early growth of cortical efferent and afferent axons was studied using 1-1'-dioctodecyl-3,3,3',3'-tetramethylindocarbocyanine perchlorate (Dil) as an anterograde and retrograde tracer in aldehyde-fixed brains of embryonic rats. Cortical axons first enter the nascent internal capsule on embryonic day (E) 14 and originate from lateral and anterior cortex; axons from posterior cortex extend rostrally but do not yet exit cortex. The labeled axons, tipped by growth cones with complex morphologies, take a pathway deep to the preplate. Preplate neurons extend these early cortical efferents, based on the developmental stage of the cortex, and on their location and morphology. Most of these cells later occupy the subplate. Cortical plate neurons extend axons into the internal capsule by E16. En route to the internal capsule, cortical plate axons take the same path as the earlier-growing preplate axons, through the intermediate zone deep to subplate. Subplate axons reach thalamus by E16; the first cortical plate axons enter thalamus about a day later. Thalamic axons enter cortex by E16, prior to other cortical afferents. On E15, both preplate and thalamic axons reach the midpoint of the internal capsule. To determine the subcortical distribution of subplate axons, we used Dil as a retrograde tracer in aldehyde-fixed brains and fast blue and rhodamine-B-isothiocyanate as in vivo retrograde markers in neonatal rats. Tracers were injected into the superior colliculus, the principal midbrain target of layer 5 neurons, at times before, during, and after the arrival of cortical axons, or into the subcortical pathway of primary layer 5 axons at two points, the cerebral peduncle caudal to the internal capsule, and the pyramidal decussation at the junction of the hindbrain and spinal cord, at times shortly after the passing of cortical axons. In every case, the labeled neurons are confined to layer 5; subplate neurons are not labeled.(ABSTRACT TRUNCATED AT 400 WORDS)
منابع مشابه
Subplate neurons: a missing link among neurotrophins, activity, and ocular dominance plasticity?
T subplate is a transient structure comprised of a subset of the earliest neurons produced in the cerebral cortex (1). Although it has now been almost 30 years since the subplate was first described (2), a definitive function for the subplate remains unproven. In general, the subplate is believed to be important for the formation of connections between thalamus and cortex. Subplate neurons have...
متن کاملPathfinding and target selection by developing geniculocortical axons.
During development of the mammalian cerebral cortex, thalamic axons must grow into the telencephalon and select appropriate cortical targets. In order to begin to understand the cellular interactions that are important in cortical target selection by thalamic axons, we have examined the morphology of axons from the lateral geniculate nucleus (LGN) as they navigate their way to the primary visua...
متن کاملAxons of early generated neurons in cingulate cortex pioneer the corpus callosum.
The internal capsule and corpus callosum are the two major efferent axonal pathways of the mammalian neocortex. Previous studies have shown that the first cortical axons to grow through the internal capsule, the pathway from cortex to its subcortical targets, are extended by subplate neurons, which are the earliest generated neurons in the neocortex. Here, we characterize the origin of the firs...
متن کاملA role for subplate neurons in the patterning of connections from thalamus to neocortex.
During cerebral cortical development, ingrowing axons from different thalamic nuclei select and invade their cortical targets. The selection of an appropriate target is first evident even before thalamic axons grow into the cortical plate: initially axons accumulate and wait below their cortical target area in a zone called the subplate. This zone also contains the first postmitotic neurons of ...
متن کاملFunctional thalamocortical synapse reorganization from subplate to layer IV during postnatal development in the reeler-like mutant rat (shaking rat Kawasaki).
Transient synapse formation between thalamic axons and subplate neurons is thought to be important in thalamocortical targeting. Shaking rat Kawasaki (SRK), having reversed cortical layering similarly observed in reeler mouse, provides an interesting model system to test this idea. The spatial and temporal pattern of excitation was investigated using optical recording with voltage-sensitive dye...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 12 4 شماره
صفحات -
تاریخ انتشار 1992